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Fermi LAT electron + positron spectrum from 7 GeV to 1 TeV, taken
in the first 12 months of operation. Total statistics 7.95 M events

First publication: PRL 102, 181101, 2009 reported the spectrum
from 20 GeV to 1 TeV, taken in the first 6 months of operation. Tota/

statistics 4.7M events
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“nermi Fermi Gamma-ray Space Telescope

Gamma-ray
Sdec Telescope

v

Two instruments onboard Fermi:
v' Large Area Telescope LAT

main instrument, gamma-ray telescope,
20 MeV - >300 GeV energy range

scanning (main) mode - 20% of the sky
all the time; all parts of sky for ~30 min.
every 3 hours

~ 2.4 sr field of view, 8000 cm? effective
area above 1 GeV

good energy (5-10%) and spatial (~3° at
100 MeV and <0.19 at 1 GeV) resolution

v—GLAST Burst Monitor GBM

/

5-year mission(10-year goal), 565 km-circular-orbit, 25.6%inclination
\(aunched on June 11, 2008 and demonstrates excellen
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<onermi Fermi LAT as a detector of high energy

Gar

o/ T cosmic ray electrons

» The LAT is composed of a 4x4 array of
identical towers. Each tower has a Tracker and
a Calorimeter module. Entire LAT is covered by
segmented Anti-Coincidence Detector (ACD).

» Although the LAT was designed to detect
photons, it was recognized early in its design
that the LAT is a capable detector of high
energy electrons too

» The electron data analysis is based on that developed for photons.
The main challenge is to identify and separate electrons from all other
charged species, mainly CR protons (for gamma-ray analysis thisis /
provided by the Anti-Coincidence System)

\- The hadron rejection power must be 103 — 104 increasing with en rgy
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s crml Electron Event Selection

*All the LAT subsystems - tracker, calorimeter and ACD
contribute to the event selection

» Event selection is based on the difference between
electromagnetic and hadronic event topologies in the instrument

Flight event display
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<.omi  Electron event selection (cont.)

» Electron event selection is a complicated, highly-optimized process that
utilizes numerous physical variables from all 3 LAT subsystems, as well as
combined variables calculated with the Classification Tree method

» Most of the selections are energy dependent or scaled with the energy

» The most powerful separators between electromagnetic and hadronic
events are the lateral distributions of the shower image
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A~ Event energy reconstruction

dema—ldy
SpJLc Telescope
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» Based on the algorithms developed for the
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s ermi Spectrum extension down to 7 GeV
Alinia (new in respect to the PRL paper)

» Lowering the spectrum from 20 GeV to 7 GeV (lowest geomagnetic
cutoff energy accessible to the Fermi satellite) requires considering the
shielding effect of the geomagnetic field

» The lowest energy of primary electrons that can be measured is
strongly dependent on the satellite geomagnetic position and decreases
with increasing geomagnetic latitude
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e Systematic uncertainties

» Very high event counting statistics makes our result dominated by
systematic uncertainties.

» Main contributor to the systematic uncertainty is imperfect
knowledge of the LAT response, mainly the effective geometric factor
(5-20% increasing with energy)

 Another contributor comes from subtraction of residual hadron
contamination (< 5%)

« Uncertainty in absolute energy scale is +5-10%
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Attempt to fit with broken injection
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Fermi LAT spectrum fitted by a GALPROP-computed spectrum
(blue line) with an injection spectral index '=1.6/2.5 |
below/above 4 GeV'and a steepening to =4 above 2/TeV, and/
modulated'in a force-field approximation with ®=450 MV ™
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IMPLICATIONS -SOME POSSIBILITIES

1.

Modify conventional diffusive model

2. Add local source
3.
4. PAMELA results and the need for two

Pulsars as potential sources

primary source classes

Main message: use the HE electron
spectrum to constrain the source

model(s) //
Yoy
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Fit with additional source
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s ermi Nearby pulsars can reveal themselves in e* e” spectrum:
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Contribution to the local electron flux from the most = Total electron flux (black line): sum of

prominent Fermipulsars. Red points — Fermi LAT single power law (blue line)-and
data contribution from local pulsars
1+ Geminga, 2 —J1732-31, 3 —J1057-5226
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» Spectral features of the Fermi LAT electron spectrum are
consistent with presence of nearby source(s).

* Fermi LAT has recently found numerous gamma-ray pulsars, with
several of them within 1-2 kpc, that make this explanation viable.

* Fermi LAT electron spectrum can be explained without
introducing different mechanisms of electron production in the
sources or different type of sources.

* Search for small irregularities in electron spectrum contributes to

\ the understanding of their origin: astrophysical or exotic (see e.g. /

\tlyshev, Chollis-and Gelfand, PRD-D80, 063005, 2009) -
\ / yay
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~29" Now — PAMELA result on the positron fraction.

S i
Example of fit to both Fermi and Pamela data with Monogem and Geminga pulsars
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It is'assumed that additional sources (here Monogem and Geminga)
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\provide equal amount of e* and e
Question: why are the et e- sources not seen at lower energy, whef

\ the positron fraction agrees with their pure secondary origin?
Yavs
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<o ermi Two mechanisms of primary electron
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- production are needed

» General idea is that the “nearby” source(s) produces ~equal
amount of e* and e, causing the positron fraction to increase

» Is this nearby source unique ? Unlikely

» Possible interpretation of the Pamela result could be if the total flux
comprises a larger flux with softer index of “primary” negative electrons
(e.g. directly accelerated in SNR shock), and smaller flux of et+e- with

harder index which starts showing up at higher energy, causing positron
ratio to increase
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Origin of hard spectrum of pairs

What could be the origin of the e*+e- hard spectrum?

There are several models, including acceleration of
“secondary” et and e- in the CR acceleration regions
(Blasi), consideration of Klein-Nishina suppression of | New MSPs in
energy losses near the points of origin (Aharonian & LAT sources
Atoyan 1991, Stawarz et al. 2009), enhanced et+e- °
acceleration in polar cap ( Biermann et al. 2009)
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Multiple cascading in pulsar magnetosphere can |
provide needed acceleration of e*+e- >

[e=]

Even more promising sources of high energy pairs

00 05 10 15 20 25 30 35 40

could be milisecond pulsars (MSP) due to their d (kpo
\high rotation frequency and low surface magnetic From A. Hatding /
field (low energy losses) HEAD2010 '
19
\ \ yay




From Alice Harding’s talk at HEAD-2010:
» Can start constraining pulsar parameters using CR data

» Impulsive injection of from pulsar wind nebulae (PWNe) of young
pulsars will produce soft (I' > 2) spectrum

» Steady injection by mature and MSPs (without PWNe) will produce
harder (' ~ 1.5 - 2) spectrum

Gamma-ray pulsations from MSPs - narrow gaps
required — screening by pair cascades! MSPs
must have high pair multiplicity.

New MSPs (18 so far) discovered in Fermi LAT
\unidentified sources - many more nearby MSPs
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«somi SUMMARY OF OBSERVATIONS
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e ReaI breakthrough during last 1-1.5 years in
cosmic ray electrons: ATIC, HESS, Pamela, and
finally Fermi-LAT. New quality data have made
it possible to start quantitative modeling.

E* J(E) (GeV’m™s™'sr™)

* With the new data more puzzles than before;

need “multi-messenger” campaign: electrons, e
o " " 10° 10 10? 10°

positrons, gammas, X-ray, radio, neutrino... £ (GeV)

« We may be coming close to the first direct detection of cosmic ray sources

e Now we can discuss not only the origin of CR electrons, but also constraints of
pulsar models based on these results.

e |tis viable that we are dealing with at least two distinct mechanisms of “primary”
electron (both signs) production. One produces softer spectrum of negative
electrons, and the other produces a harder spectrum of both e*+e". Exotic (e.g. DM)

origin is not ruled out.

- More accurate measurements are on the way from Fermi, PAMELA and HESS.
Chtlcal new results on the positron fraction are expected from/'the AMS. Result
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